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Interacting flow theory and trailing edge 
separation - no stall 
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United Technologies Research Center, East Hartford, Connecticut, U.S.A. 
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The central question addressed here concerns the occurrence of laminar separation 
near a non-symmetric trailing edge, on one surface only of an airfoil, and whether 
or not such an event heralds a ‘catastrophic stall ’ in the sense that the flow structure 
changes significantly from the triple-deck or interactive-boundary-layer form holding 
for attached flow. Virtually all previous works have conjectured, assumed or argued 
that there is such a catastrophic stall. The present work, however, points (strongly, 
we believe) to the opposite view, based on a combination of analytical and numerical 
grounds. First, the argument for a catastrophic stall, although tempting, is shown 
to contain a fundamental flaw. Secondly, the present numerical work deliberately 
aims at  including the most important separated-flow features, the acknowledgement 
of the discontinuities at  the trailing-edge station and the effects of reversed flow, in 
a systematic fashion. This appears to be the first such attempt. As a result the 
trailing-edge requirements are found to be swept upstream, forcing any flow reversal 
on just one surface to be followed by a reattachment, however abruptly, just before 
the trailing-edge point. Thirdly, an analysis of the nearly separated and the just- 
separated regimes confirms the natural emergence of the reattachment phenomenon 
and ties in closely with the observed numerical features. In particular, the distance 
of the reattachment point from the trailing edge is found to be of the tiny order 2* 
or less, where d is the small upstream separation distance. Finally, there is shown 
to be a logical tie-in also with trailing-edge flows involving two-sided separation where 
no catastrophic stall arises. I t  is concluded that there is no catastrophic stall and that 
inter alia the triple-deck/interactive-boundary-layer approach can continue to be 
used with one-sided separation present. 

The study implies some fairly striking features associated with one-sided separating 
flows, but these do bear a firm resemblance to recent laminar and even turbulent flow 
computations and experiments. This indicates that, contrary to previous proposals, 
such computations and experiments are explicable within the realms of interactive- 
boundary-layer theory. 

1. Introduction 
The part played by the trailing edge of an airfoil in flight is vital. If the main flow 

past the airfoil departs significantly from the surface shape ahead of the trailing edge, 
the adverse consequences for the lift and drag can be substantial. With this in mind 
we address the matter of trailing-edge stall, for a non-symmetric airfoil fixed in 
an otherwise uniform stream. Theoretically, is there a ‘catastrophic stall’ (in the 
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sense of a breakdown, failure and hence, of most physical importance and danger, 
a discontinuous change in the entire steady flow structure) when flow departure or 
separation first occurs ahead of the trailing edge on just one of the airfoil surfaces 1 
This central question arises because of the RotkHakkinen condition (Hakkinen & 
Rott 1965) for high Reynolds number motions where the interactive-boundary-layer 
equations control events, for most separated or attached motions at least. The 
condition is that, if the flow is forward on one' side of the surface (say the lower side), 
at the onset of the trailing edge, then it must also be forward there on the other, upper, 
side. As a result it has been argued, conjectured or assumed in a number of very 
interesting previous works in this area (see Brown & Stewartson 1970; Stewartson 
1974; Messiter 1979; Daniels 1974; Melnik & Chow 1975; Chow & Melnik 1976; 
Veldman 1980; Brown & Cheng 1981; Stewartson 1981) that, once one-sided 
separation occurs, there must be such a catastrophic stall or failure because the 
Rott-Hakkinen forward-flow condition is violated, and so a new flow structure must 
arise. If so, there could be a drastic effect on the airfoil performance. 

This study advances the opposite view, however, based on the analytical and 
numerical arguments to be described subsequently. Our point is that once separation 
does occur, say on the upper surface ahead of the trailing edge, then beyond 
separation the very presence of reversed flow allows upstream transmission of 
information locally. So, in particular, the information concerning the requirement of 
forward flow at the trailing edge can be transmitted upstream, thereby forcing the 
flow upstream to adjust itself in readiness for the Rott-Hakkinen constraint further 
downstream, in principle. Such an adjustment requires a reattachment to take place 
between the positions of the separation point and the trailing edge, of course. The 
analysis and calculations described in this investigation support strongly (we believe) 
the view that reattachment does indeed occur and that accordingly there is no 
catastrophic stall or discontinuous change. Hence the effect on airfoil performance 
is not so drastic. 

The governing equations and boundary conditions are introduced in Q 2. Specifically, 
we take a thin airfoil whose main non-symmetry is confined to,the trailing-edge area 
within the triple-deck : Stewartson 1969 ; Messiter 1970; Brown & Stewartson 1970), 
other less local non-symmetries being of secondary importance at this stage. Either 
the usual triple-deck or a condensed problem, concerning a slightly more abrupt 
trailing-edge geometry, is suitable for the investigation of the matter of stall. The 
condensed problem in fact serves to emphasize the role of the reversed flow while 
losing nothing central to the issue. Finite-difference numerical solutions for these local 
flows are presented in Q 3. Three crucial parts of the numerical treatments are : (i) the 
use of appropriate windward differencing to allow for the upstream transmission of 
information through the reversed flow; (ii) the choice of the direction of differencing 
at the trailing-edge station, where the irregularities/discontinuities of the flowfield 
have to be acknowledged; and (iii) the use of small step sizes to reveal the delicate 
flow features close to the trailing edge, for reasons given subsequently. 

Two main sets of results are given in $3.  The first concerns a thin, drooped, 
trailing-edge geometry, or trailing-edge flap. As the droop non-symmetry increases, 
so that the upper surface flow comes nearly to the verge of separating, a strong 
downwash, including reversed and forward flow, is promoted just beyond the trailing 
edge. The tongue of reversed and forward flow next reaches just ahead of the trailing 
edge when the upper surface flow becomes separated due to a further increase of the 
drooping. Thus the dividing streamline from the upper surface separation first 
proceeds forward beyond the trailing-edge station, but then cuts back and reattaches 
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to the upper surface, leaving forward flow near the surface downstream between the 
reattachment point and the trailing edge. The Rott-Hakkinen condition is thereby 
satisfied. The strength of the downwash or plunge of upper surface fluid is dictated 
by the strength of the forward flow leaving the lower surface, but in general it is quite 
intense for the immediately post-separated stage. A t  the same time the typical 
lengths involved in the downwash and ensuing reattachment processes are very 
small, even compared with the relatively small distance between the separation point 
and the trailing edge. The second set of results is for a thick trailing-edge geometry. 
The forward-flow condition above is irrelevant if both upper and lower surface flows 
are separated (see the appendix), and it is found that the pair of symmetrically 
disposed eddies behind a fairly thick symmetric trailing edge is gradually distorted 
as non-symmetry is introduced by moving the lower surface towards the fixed upper 
one. Eventually the downstream end of the upper eddy is pushed back towards the 
trailing edge, inducing an increasingly fierce plunge of upper surface fluid, which pours 
around the lower eddy and forces it more downstream. Further increase of the 
non-symmetry causes the lower eddy to be washed away, and the fierce plunge and 
reversal of the upper surface fluid just beyond the trailing edge make the reattachment 
process on the upper surface come into action as one-sided separation is reached. 
Subsequently, as the thin drooped configuration is retrieved, the abrupt properties 
noted earlier emerge again. The calculations are quite definite about the adjustment, 
however strong, occurring in the local flowfield in the post-separated stage, and a 
structural analysis ($4) of this stage as well as the pre-separated one firmly favours 
all the observed features above. In particular, one finding of interest is that the main 
lengthscale controlling the reattachment process is of the tiny relative order 24 (see 
also Smith 1983a), where, in non-dimensional terms, -2 is the typical small negative 
skin friction induced after the upstream separation on the upper surface. 

Our conclusion, then, is that catastrophic trailing-edge stall per se is avoided. Any 
difficulties encountered in treating one-sided separating flows are of a numerical 
rather than a conceptual nature. This, of course, provides new impetus to the use 
of the interactive-boundary-layer concept, since now it can continue to be used even 
with one-sided separation present. 

Section 5 discusses the consequences of the above conclusion as far as further 
increases in the non-symmetry are concerned, and notes comparisons with experi- 
mental and fully numerical findings, for both laminar and turbulent flow, among 
other things. Also, recent studies by Burggraf (1983) and Elliott & Smith (1983) tend 
to favour the above conclusion. As regards notation, we use u, v to denote the 
velocities in the x, y Cartesian directions respectively, the thin airfoil being centred 
along the x-axis between II: = 0 and x = 1. The velocities here and the pressure p have 
been non-dimensionalized with respect to uz,  pzuza, where uz, p z  are the 
free-stream velocity (left to right) and density, in turn. The bulk of the investigation 
below applies to subsonic or supersonic laminar motions, with two-dimensionality 
and steadiness assumed, although subsequent generalizations are possible. The large 
Reynolds number R = uz Z*/vz where I* is the airfoil chord, v$ is the kinematic 
viscosity and the physical coordinates are l*x, l*y. 

2. The central question of catastrophic trailing-edge stall 
A t  the heart of things we have the triple-deck problem (Messiter 1979; Stewartson 

1981 ; Smith 1 9 8 2 ~ )  governing the incompressible fluid Aow past a non-symmetric 
trailing-edge geometry, although extension to the interacting-boundary-layer concept 
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a t  finite R can be made. I n  the usual triple-deck form, the velocities U ,  v, the pressure 
p and the local coordinates x- 1,  y are scaled as 

(u, V ,  p ,  x- 1, y) = (R-gA’$U, R-gALV, R-iAb P ,  R+A$X, R%I+Y), (2.1) 

for the lower deck, where A, = 0.33206 is the reduced skin friction of the O(R-4) 
Blasius boundary layer ahead of the triple deck. Then P is independent of Y ,  and 
U ,  8, P ( X )  satisfy the boundary-layer equations 

au + av 
ax e- - 0, 

au -au a 2  u u- + v-= -Pi(X)+ - a ~2 ax ay - 

(2.2u) 

(2.2b) 

and the boundary conditions : 

[no slip at surface] u = V = o at Y =  O* for x < 0, (2.2c) 

[wake condition] P+(X) = P-(X),  U regular in Y for X > 0, (2.2d) 

[match with main deck] U+ - - * Y _ + F * ( X ) + A , ( X )  as Y + f o o ,  (2.2e) 

[upstream match] ( U ,  V , P * , A + ) + ( l U , O , O , O )  - as X+-co,  (2.2f) 

- 

[downstream match] P+(co) - = A;(oo) - = 0. (2.29) 

Here (see figure 1 )  the subscripts f refer to values above and below the upper and 
lower body surfaces Y = F+(X) respectively in X < 0, or above and below the line 
Y = F ( X )  in X > 0;  this l&e can be chosen arbitrarily subject to  the convenient 
condition of continuity that F(O+)  = F+(O), and we take B ” ( O + )  to be finite. It is 
assumed here that F+(O) = F-(O) so that the body does not have an aligned steplike 
trailing edge. It is assumed also for convenience (see below) that the non-symmetry 
of the flow field, and hence of the body, is confined to the triple-deck scale in the sense 
that (2.2f, 9) hold and F; ( - 00) = 0 (figure 1 ) .  This allows a thin or a thick symmetric 
or non-symmetric (e.g. drooped/flapped) blunt or sharp? trailing edge to be con- 
sidered, but for the moment i t  deliberately avoids consideration of the effects of a 
significant angle of attack, for instance. Further comments concerning the influence 
of the angle of attack are made later. Again, the Prandtl transformation 
Y =  Y-F+(X),  v =  V - F ; ( X )  U has been applied to  yield (2.2u-g), while in (2.2e) 
the reduced displacement effects A + (X) are unknown in advance, as are the pressures 
P+ ( X ) .  They are linked, however, b y  the pressurdisplacement relation (produced 
in-an inviscid fashion in the upper deck), which for incompressible fluid flow is 

where the bar denotes the Cauchy principal value. For compressible fluid flow, 
provided that the definitions in (2.1) are suitably adjusted, the law (2.3) and (2.2u-g) 
still stand if the flow is subsonic, whereas if the flow is supersonic the only change 
is the replacement of (2.3) by 

P+(X)  - = - A > ( X ) .  - (2-4) 
t We concentrate in this study on sharp non-symmetric trailing-edge geometries, to address 

the question of catastrophic stall. Blunt symmetric geometries have been considered recently by 
Werle & Verdon (1980), Korolev (1980b) and Vatsa, Werle & Verdon (1981). 
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FIGURE 1. The triple-deck region near the non-symmetric trailing edge: (a) the general flow 
structure; ( b )  the lower deck I. Not to scale. 

Numerical solutions and analytical properties of (2 .2a-g)  with (2 .3)  are to be 
described in $53 and 4 in turn. Beforehand we address the central question of 
catastrophic trailing-edge stall, which hinges on the flow features very close to the 
trailing edge (on the present scale). For definiteness, suppose that the body is 
predominantly a thin flat plate there, in that F l ( 0 )  = K ( 0 ) .  Then, if the reduced 
skin frictions 7+(X) = k a U / a Y ( X ,  O f )  on the upper and lower surfaces are both 
positive, A,  say, at the onset X = 0- of the trailing edge, giving forward flow there, 
the solution just beyond the trailing edge can be written down in terms of the 
Hakkinen & Rott (1965) similarity solution, for _ _  small r at least. Thus, with Y 
denoting the stream function of U,  v( U = aY/aY,  V = - a Y / a X ,  Y = 0 at = 0), 

(0 -= x * l ) ,  
Y = XiG(q)+  ..., 
P = P(O)+Xi%+ ... 

(2 .5a)  

where 7 = r / X i  and, from (2 .7a,  b ) ,  G(q )  satisfies the nonlinear ordinary differential 
equation 

G " + & y y - g C ' 2  = $5 ( 2 . 5 b )  
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and the matching conditions 

( 2 . 5 ~ )  

These conditions stem from, first, the given oncoming wall-shear values A,  = 7* (0 - ) 
and, second, the necessity of effectively zero local displacement. The latter is worth 
noting for later use. If the ‘ + 0 ’  in ( 2 . 5 ~ )  is replaced by ‘ + A , ’ ,  say, then a 
displacement effect - A ,  Xi is transmitted to the outer boundary condition (2.2e) (see 
Brown & Stewartson 1970), causing A ( X )  to have a contribution cc A ,  S, which in 
turn forces an effect cc A, X3 in P(X) from either of the laws (2.3) or (2.4). So there 
is then inconsistency with ( 2 . 5 ~ )  unless A ,  = 0, giving ( 2 . 5 ~ ) .  The solution of (2.5b, c) 
for G,(q) (and Pf) exists if 

A ,  20 (2.5d) 

P 
G,(v) - + + A ~ ( ~ ~ + o ) z +  3 as T +  +a. 

A ,  

(for representative solutions see Brown & Stewartson 1970). It does not exist, 
however, if either of A ,  is negative, corresponding to reversed flow on one or both 
surfaces at X = 0-, except for the special case where A+ = - A - ,  
Go = i A +  ~ ~ + l j / A + ,  U = A+ F, a case which we tend to discount on physical 
grounds anyway. The non-existence here can be established analytically from 
substitution into (2.5b) of a slight perturbation to the outer constraints ( 2 . 5 ~ ) :  
this shows that a decay towards ( 2 . 5 ~ )  is impossible then (see also Smith 1983b). In  
a number of interesting previous works discussing non-symmetric trailing-edge flows 
(Brown & Stewartson 1970; Daniels 1974; Melnik & Chow 1975; Chow & Melnik 1976; 
Veldman 1980; Brown & Cheng 1981 ; Messiter 1978; Stewartson 1974,1981) the first 
appearance of separation, 7 < 0, on one side only of the body surface, say the upper 
side, so that 

7+(Xs) = 0 with X, < 0 but A- still positive, (2.5e) 

has been identified or suggested as the criterion for breakdown, failure or ‘catastrophic 
stall ’ of the triple-deck description, it being argued that the Rott-Hakkinen 
condition (2.5d) is then violated. The one-sided Separation? phenomenon (2.5e) arises 
at  an angle of attack > Ab Rda,,  a1 = 0.47, for the non-aligned flat plate in an 
incompressible fluid (Melnik & Chow 1975; Chow & Melnik 1976), for instance, and 
a t  a reduced angle AL R-fa,, u2 = 2.050, in the corresponding supersonic-flow problem 
(Daniels 1974). Both of these problems are slight variants of (2.2u-g) with (2.3) or 
(2.4) of course. 

Two major points arise from (2 .5~-e ) .  First and foremost, although the above 
argument for a catastrophic stall is tempting, it has a loophole, in that (2.5e) does 
not necessarily imply that the Rott-Hakkinen requirement (2.5d) is violated. For if 
the flow does separate on the upper surface at X = X, < 0, then no matter how small 
or large -X, is, there is still room for the flow to adjust itself between X = X, and 
X = 0 to ensure that (2.5d) is satisfied. This view receives extra support from the 
fact that, once separation takes place a t  X = X, < 0, the boundary-layer equations 
become parabolic in the negative X-direction during the reversed flow for X > X,, 

-f By contrast, if two-sided separation is present, as in Werle & Verdon (1980), Korolev (19806), 
Vatsa et al. (1981), Ruban & Sychev (1979), Smith & Merkin (1982), and also $3, then the expansion 
(2.5a) no longer applies. Instead an essentially uniform reversed stream is present in the wake as 
X+O+ for small F. This forces Blasius-like O( - X ) i  reversed sublayers on the body surfaces in 
X < 0 for small (XI and an O(-X)- i  dependence in the negative skin frictions 7*(X) as X + O - ,  
so that in effect A ,  are then both infinitely negative. See the appendix. 
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FIQURE 2. Schematic diagram (not to scale) of the ‘condensed’ trailing-edge region. 

until the flow becomes totally forward again further downstream. So information can 
be transmitted upstream through the reversed flow in X > X,, thus providing a 
strong local mechanism by which the condition (2 .5d)  at X = 0- can make its 
presence felt upstream, and in particular force the skin friction T+(X) to become 
positive again in X ,  < X ,  < X < 0, in principle. Indeed the above outlines the main 
idea of the present work, that if (2 .5e)  holds then a reattachment always occurs before 
the trailing edge, to make A,, positive in compliance with (2 .5d) .  

The second point here is that the pressure-displacement law, unless it is particularly 
bizarre, really plays no significant part in deciding the main issue of catastrophic stall, 
i.e. the satisfaction of (2.5u-d). Whether (2 .3)  or (2 .4)  holds, or, indeed, if the flow 
is hypersonic, the local flow behaviour must still have the form (2 .5a-d)  near the 
trailing edge, with the condition (2.5 c )  signifying effectively zero displacement effect 
there. I n  addition, if the upstream separation distance -X, is a t  all small, then again 
the pressure-displacement law is largely irrelevant (see also 9 4 )  because, as with 
(2 .5c) ,  this most sensitive part of the flowfield is close to the trailing edge where the 
pressure-displacement law always reduces to the constraint of zero local displacement, 
to leading order. It does not provide a strong enough mechanism, comparable to 
that described in the previous paragraph, for the upstream transmission of information 
locally near the trailing edge. In  a sense the particular form of the pressure- 
displacement law is a secondary matter, therefore, even an unnecessary complication, 
as regards the main question of catastrophic stall. 

I n  consequence, as well as addressing the triple-deck problem of (2 .2a-g) ,  (2 .3)  
subsequently, we study also the simpler ‘condensed problem’ (figure 2) which arises 
from (2 .2u-g) ,  (2 .3)  or (2 .4)  as follows. Suppose that the streamwise and lateral scales 
of the trailing-edge non-symmetry in (2 .2e)  are both small, of order L,  Li, respectively, 
relative to the lower-deck coordinates X, Y ,  so that 

say. Then for most of the flowfield (zones I in figure 2 ) ,  effectively Frt ( X )  = 0 in (2 .2e)  
and so there, to within O(Lj), (2 .2a-g) ,  (2 .3)  reduce to the symmetric flat-plate 
problem, numerical solutions for which are given by Jobe & Burggraf (1974),  Melnik 
& Chow (1975) and Veldman & van de Vooren (1975) and others. The motion there 
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stays attached, with the skin friction 7 * ( X ) + p 0  > 0 as X + O - ,  the pressure 
P+(X)+n, < 0 as X + O + ,  P;(O-)  is finite but P‘ (X)  K X-i as X - t O + ,  as in ( 2 . 5 4 ,  
toleading order. Values for the O(1) constantsp,, n-, are given in the above references. 
Closer to the trailing edge, however, in zone IV on the condensed scales X = L$, 
u= Lip;”, the flow properties have the development 

[ U ,  v, PI = [Lip!O($, F), L+pkF($, F), n,+L~p{P(X)]+ .... (2 .7)  

See Smith et al. (1981) for a discussion of the wide range of validity of the description 
(2 .7)  for flow over humps ; a similar approach shows that the ultimate conclusion (2.9) 
below holds also if the incident skin friction A, is reduced. In  (2.7) the orders for U ,  
V are inferred from the local O( 1) skin friction and from mass conservation, and the 
order of P then follows from the momentum balance. From (2 .2a ,  b )  0, 9, P therefore 
satisfy 

( 2 . 8 ~ )  

(2 .8b)  

while the appropriate boundary conditions are now 

0 = 9 = 0  at P = o +  for X < O ,  ( 2 . 8 ~ )  

I?+($) = P-(X), 8 regular in P for 2 > 0, (2 .8d)  

0, - f F+P+($) - as P+ co, (2 .8e)  

(0, P, Pk(X))+(IF~, O , O )  as $+-a, (2.Sf 1 

where p+($) = pii”+($). Here (2 .8c,  d )  correspond to (2 .2c,  d) ,  but ( 2 . 8 e , f )  require 
further comment. First, if a displacement term A^+ ($) is added to (2 .8e)  then its effect 
is felt throughout the O ( L )  by O(1) zones V- (figure 2 )  above and below the 
concentrated zone I V ;  so the induced displacement A +  in ( 2 . 2 f )  is K L b f , ( S ) ;  but 
then the pressure-displacement law (2 .3)  or (2 .4)  forces a pressure response of order 
L-%dA+/d$, contradicting (2 .7)  and the momentum balance; hence A,($) = 0. So 
(2 .8e)  satisfies both the match with the symmetric shear aU/aY N po in I and the 
pressure-displacement law (2 .3)  or (2 .4) .  The argument is similar to that used 
previously for ( 2 . 5 ~ ) .  Secondly, ( 2 . 8 f )  matches to the incoming symmetric shear p,, 
upstream in I, but it allows non-zero pressure levels, of order Lg from (2 .7) ,  to emerge 
there from the condensed zone. These levels coincide with the pressure-perturbation 
levels throughout I and need be reduced to zero only as 1x1 -+ 00 in I. On the other 
hand, the local pressure gradient in IV is large, O(L-4) from (2 .7) ,  as compared with 
the O(1) gradient in I, so that the values P i (  - co) = 0 are required for cdnsistency. 

The condensed problem (2 .8a-f)  is still controlled by the behaviour (2 .4u-c)  a t  
$ = O +  subject to the redefinitions (2 .7)  and +(x) = ao/i?( PI($, O), f * ( O - )  = A*. 
For ( 2 . 5 ~ )  is independent of the pressure-displacement law ( 2 . 3 ) ,  (2 .4)  anyway, and 
so in particular i t  applies to the condensesd problem for which in effect (2 .3)  or (2 .4)  
is replaced by the simpler law 

A + ( X )  - = 0, (2 .9)  

because of (2 .8e) .  Therefore the central question of catastrophic stall raised by 
(2 .5d,  e )  does remain present as required. However, the law (2 .9)  yields two 
advantages. The first is that the flow problem becomes entirely parabolic in the + X 
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direction ahead of any separation (Smith 1976), so that, numerically, multiple 
sweeping of the flow there is not required. The upper and lower surface flows remain 
independent up to separation, which, as with (2 .3 ) ,  ( 2 . 4 )  is always regular. The second 
advantage is that  ( 2 . 9 ) ,  the ‘condensed problem ’, puts the inviscid pressure- 
displacement law aside, as it should be (see earlier comments) in the central question 
of catastrophic stall. Thereby it allows a much closer investigation to be made into 
the idea of the present work that, when - X ,  is small a t  least, the resolution of (2 .5e )  
versus ( 2 . 5 d )  occurs by means of a reattachment forced by the upstream influence 
within the boundary-layer equations alone, and that catastrophic stall does not occur. 

3. Numerical method and solution 
A finite-difference numerical treatment was adopted. Although for reasons just 

stated we attended mainly to the condensed problem, the treatment was developed 
for, and so is described in terms of, the triple-problem primarily, with the condensed 
problem then emerging as a special case. 

The method is an extension of Smith & Merkin’s (1982) technique. I n  summary, 
the transformation X = tan x is used to handle the range ( -  00, co) of X by 
calculation in -in < x < !jn and to  assemble grid points near the trailing edge. Then, 
for each sweep of the flowfield, the upper surface layer F> 0 is marched forward 
from ( 2 . 2 f )  a t  x= -in to x = 0- by solving three first-order equations for Y, U ,  
aU/aY  - from ( 2 . 2 a ,  b ) ,  with two boundary conditions on U ,  i3U/aY nominally as 
Y- t  00 from (2 .2e )  and two on Y, U at y = 0 from ( 2 . 2 ~ ) .  The lower surface layer 
Y <  0 is marched similarly up to the trailing edge. I n  general, that  leaves P+, P- 
unequal a t  X = O, in subsequent violation of ( 2 . 2 d )  a t  that  stage. This difficulty is 
resolved simply by calculating the average pressure Pa, = t( P+(O) + P-(O)), multiplying 
all the latest A +  values by PT (O)/P!, and afterwards setting P+ (0) equal to Pa,. The 
wake x > 0 can then be marched forward with two boundary conditions now on U ,  
aU/a Ynominally as F+ f co a t  each X-station and subject to the unknown pressure 
P+, to which P- is equated in retrospect for ( 2 . 2 4 .  The next sweep then starts a t  x =  -in. At each station the local Veldman (1980a,b) technique, modified because 
X = t a n z ,  is applied for updating P+, A ,  at %, given (2 .3)  and a global guess for 
A + .  The nonlinearity of (2 .2a ,  b )  in centred-difference form is treated with Newton 
iteration followed by Gaussian elimination and superposition to fix the incremental 
pressures locally. Deliberately a limited number of Newton iterations is permitted 
per station, the solution there then being stored so that the iterative tolerance 
(typically lo-’) is achieved in the later sweeps by taking the latest stored values of 
the solution as initial guesses. Again, since A +  grows like Xi as X - t  00 (see (3 .4a -d )  
below) in the triple-deck problem we worked ;n terms of the modified variables p S * ,  
A, ,  of Smith & Merkin (see their (2.1 1 b ) )  to allow for the growth. I n  later calculations 
we also used a stretchiiig in the Y-coordinate, coupled with the new transformation 
X = ( t a n z ) 3  [-in < z< +n]. This was done partly to accommodate the similarity 
form (2.5a-c) and its counterpart 

for y = 0(1), as X + O + ,  where U +  = Uo( F), Y+ = Yo( F) give the solution profiles 
at X = 0- , and partly to assemble the grid points immediately upstream of X = 0 
in line with the analysis of $ 4 .  The scheme converges in 10-20 sweeps typically. 

For the condensed problem the matter is simpler, because effectively ( 2 . 9 )  replaces 
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(2.3), and (2.9) on its own induces no upstream influence. So without reversed flow 
present only one sweep of the flowfield is required. Techniques similar to the above 
are applicable. The upper and lower surface layers are again marched up to the 
trailing edge, but now with p+ -p+(  - 00) being determined at each station. Since 
the requirement 2?+(0) = p-(0) holds,the value of p+( - 00) -I?( - 00)  can immediately 
be found, while the pressure level l?+( - 00)  remains unknown, in keeping with the 
comments of $2. Then the wake solution is derived by forward marching, and the 
solution terminates with the property 

P * ( X ) K S  as S+co (3.2) 

(Z+&I - ) automatically emerging downstream. Here (3.2) merges the condensed-flow 
solution in IV  in figure 2 with that of the essentially aligned flat plate outside in I 
as X + 0 +  . Thus Rott-Hakkinen forms apply both as 8+0+ and as -f+ co. For 
these forward-flow calculations the Newton iterations must be continued at each 
station until the iterative tolerance is satisfied, to avoid sweeping. 

The above applies if there is no reversed flow. If flow reversal does occur, however, 
then, since the boundary-layer equations become parabolic in the - X-direction 
locally, an iterative approach allowing information to be transmitted in the -X- 
direction there is essential. Although some approximate numerical treatments do 
apparently allow the solution to be marched foward without any such transmission 
of information, they contradict the physics and mathematics of the reversed-flow 
situation: this is either by actually changing the governing equations, as in the 
Reyhner & Flugge-Lotz (1968) approximation, or by using difference approximations 
which appear stabilizing for finite grid sizes and/or forward flow but which surely 
cannot be stable in the required limit of zero step size for reversed flow, as in the 
Du-Fort-Frankel and extended backward-differencing schemes (Dijkstra 1978 ; 
Dijkstra & Veldman 1980). In  some flow problems the difficulty seems not too crucial 
because the reversed flow does remain passive and small numerically. I n  the present 
trailing-edge separating flow, by contrast, the role of the reversed flow is vital, 
especially near the trailing edge, in deciding the issue of stall. Accordingly we adopted 
first a windward-differencing approach to incorporate the upstream influence of any 
reversed flow. To date the approach has been applied only to the condensed problem 
and is considered in that context, although it applies equally well to  the triple-deck 
problem also. Wherever 0 < 0 at a station 2? the term Oao/ag  in (2.8b) is replaced 
by the appropriate forward difference involving the unknown t?(s) at 2 and the value 
O(n-l) at r?+ Sr? given from the previous sweep of the flowfield, where (n) refers to  
the value at the current nth sweep and S g  is the local step size in 2. We start with 
O(0) G 0, say. Elsewhere the original forward-marching method remains intact. The 
scheme is similar to, but not identical with, for example, that of Carter & Wornom 
(1975; see also Carter 1974, 1979). It remains stable, and the crucial backflow effect 
enters the solution sweep by sweep until overall convergence is obtained in about 10-15 
sweeps, depending on the grid dimensions used. That scheme still essentially glosses 
over one essential aspect, the feature that aP/ax = - P d X / d X  and d p / d X  are 
discontinuous acrbss r? = 0 (from (3.1), (2.5a-c) with '-' overlaid and X = ( t a r ~ X ) ~ ) .  
Therefore a number of computational trials were made, with varying degrees of 
success, to accommodate that feature. In  the final modified scheme, the terms 
Pao/aI' and the pressure gradient, at the station = 0 only, are also represented 
completely by forward differences whenever 0 < 0. This step involves adding in the 
appropriate correction contributions from the stations 3 = - Sg, 0, Sg retrospec- 
tively, using previously calculated values, to make the eventual converged solution 
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FIQURE 3. Solutions of the triple-deck for a drooped trailing edge, or trailing-edge flap: (a )  
pressure distributions; ( b )  surface shear stress; both versus X .  

allow for the irregularities at  the trailing edge station. The test on the condition 0 >( 0 
here is placed at x = Kf for consistency, since otherwise the same momentum balance 
could be used twice, in the determination of the solution at 8 = 0 and at = 63. This 
placing further serves to inform the upper surface flow ahead of the trailing edge, 
sweep by sweep, that forward flow is essential at g = 0 if the lower surface flow is 
still attached, from (2 .5a-d) .  The modified scheme therefore allows for the irregularities 
of (3.1), (2.5a-c) as well as for the backflow, and so throughout it seems formally 
correct in the limit of zero step size. Certain other modifications were tested, including 
three-point forward differencing and the use of l?(n-l) at 2 instead of l?(n) for the 
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reversed flow, but these had negligible effect on the final results. Typically (see also 
the grid test below) we took 101 or 201 streamwise steps, 81 or 161 laterally, with 
outer boundaries a t  & 8 and a Newton iterative tolerance of lo-’. 

Concerning the triple-deck problem (2.2a-g), (2.3), numerical solutions are pre- 
sented in figure 3 for the shapes 

(3.3) 

corresponding to a thin non-symmetric drooped trailing edge or trailing-edge flap, 
with L = 1 and for various values of a 3 0. As a check, for a = 0 in figure 3 the aligned 
flat-plate solution noted earlier is retrieved satisfactorily. For the positive values of 
a: shown, the upper surface pressure P+ first falls gradually in X < 0 (figure 3a) ,  
inducing a tendency towards firm attachment upstream (7+ t) (figure 3 b )  before the 
opposite occurs closer to the trailing edge, where P+ rises and 7+ falls quickly. This 
is sensible physically, as are the eventual rise and fall in P-, 7- upstream before the 
favourable pressure gradient and rise in 7- emerge nearer X = 0- .  Beyond the 
trailing edge the pressure first increases fast (cf. (2.5a)), then i t  attains a positive 
maximum, and far downstream returns to its original value of zero. The farfield forms 
of P ,  A as X + m  are 

A -  y l X i f y , ~ - * + . . .  as X + + C O ,  

as X + - m ,  

(3 .4a)  

(3.4b) 

from (2.2a-g), (2.3), where y1 = 0.892 (for an alternative see Smith 1983b) but yz  is 
an unknown constant dependent upon the entire flow solution for X finite. I n  figure 
3 (a)  the pressure difference shown, P+ - P-, is responsible for the lift produced by 
viscous action around the non-symmetric trailing edge, as compared with the inviscid 
lift which is zero. As the droop factor a increases, the lower surface skin friction of 
figure 3(b )  at the trailing edge ~ - ( o )  = A- increases, but the upper surface value 
T +  (0) = A+ decreases, and the results suggest the onset of separation a t  a w 3.5. At 
this juncture, therefore, we switched attention to  the issue of catastrophic stall as 
addressed more directly by the condensed problem. 

For the condensed problem (2.8~-e),  the trailing-edge geometry was taken as 

4 
1 + (2- l / g ) z ’  P+(2) = - 

(3.5) 

for various values of oil(> 0),  oi,. Here (3.5) gives a thin or a thick symmetric or 
non-symmetric, e.g. drooped/flapped, trailing edge. The connection with (3.3) for the 
corresponding triple-deck problem is achieved by taking L small with a of order L5. 
When 8, = Oil the geometry is the thin drooped plate again, and figure 4 gives the 
results for that case (including a sample check on the effects of grid size) as 8, is 
increased from zero. For Oil = Oiz 7 0 the plate is flat and the condensed solution is 
trivial: 0, = I PI, P = 0 for all X c 0 while 0 = XjGh($), pot X$(A, EE 1 )  for all 
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r? > 0. The numerical results achieve this form satisfactorily in figure 4 .  Then for 
= 8, positive the upper and lower surface pressures pi respectively increase and 

decrease monotonically (figure 4 a ) ,  and i+ do the opposite (figure 4 6 ) ,  provided there 
is no separation. There is some relation with the earlier triple-deck results, but 
without the secondary issue of upstream influence forcing the initial upstream trends 
of figure 3 .  The onset of upper-surface separation is reached now at 8, = 8, x 2.42, 
where h^+ + O  + . Solutions are also shown for the post-separated configuration for 
larger values (up to 4 )  of 2, = L2, with h^- > 0 and figure 4 indicating what is believed 
to be the resolution of the dilemma between (2 .5d,  e ) :  a reattachment takes place 
between X = X, < 0 and X = 0- (see figure 46,  c ) .  

The typical lengths involved in the reattachment processes just before the trailing 
edge were observed to be very small numerically (e.g. figure 4c) .  They hardly show 
up at all on a conventionally sized plot of the entire flow solution, a feature which 
fits in well with the subsequent analysis of the post-separated situation, in $ 4 ,  in fact. 
Further, the extreme grid refinement, particularly in the $-direction, proved 
necessary to track the solution in the vicinity of the trailing edge, although virtually 
all the rest of the solution could be fixed accurately with a less refined grid. This again 
ties in with $ 4  below. It is worth remarking here that often with a less refined grid 
or before iterative convergence was achieved the Rott-Hakkinen condition (2 .5d)  
could be violated by the numerical solution without causing any apparent breakdown ; 
but, as convergence approached and/or the grid was refined, the value of 1, then 
increased and eventually became positive owing to a small abrupt pressure drop 
locally (figure 4 c ) ,  with the other values of i+(& altering relatively little throughout. 

Another view of the proposal concerning reattachment is provided by the results 
in figure 5 for Oil = 4 kept fixed, so that upper-surface separation in < 0 is 
guaranteed, but with 8, 2 a^,> -L1. The lower surface flow is then also separated if 
8, < -&,, in which case the account (2.5a-d) does not apply as it is replaced by that 
in the appendix, and the question of catastrophic stall does not arise. If 8, > - 8,, 
however, there is no lower surface separation and the matter of catastrophic stall can 
be readdressed. Gradually increasing 8, from -8, to 2, corresponds to gradually 
changing the trailing-edge geometry from a nearly blunt symmetric shape to the 
non-symmetric thin drooped plate. The transition of the numerical solutions for 
pressure and skin friction in figure 5(a-6)  as 8, increases is physically sensible, 
especially in view of the corresponding development of the streamline patterns shown 
in figures S(a-e). The emergence of the upper-surface reattachment as 8, passes 
through the value 8, = - 8, seems almost inevitable. The two recirculating eddies tend 
to be rotated towards the upper surface and distorted due to the extra non-symmetry, 
the increased strength of the oncoming lower-surface flow and the resultant draw of 
the upper-surface fluid towards the lower. Eventually the lower eddy disappears 
completely. 

The trends of the above solutions, including the fairly abrupt reattachment 
phenomenon, tie in closely with the following description of the flow properties for 
the pre- and post-separation stages. The description applies equally well to the 
triple-deck or the condensed problem. 

4. Analysis of the pre- and post-separation properties 
4.1.  General comments 

Below we consider the structures of the non-symmetric trailing-edge motion when : 
(a )  the motion is pre-separated, with forward flow along both surfaces, but the upper 
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FIQURE 4. Solutions of the condensed problem for a thin drooped/flapped trailing edge (Ll = Lz) : 
(a) pressure; ( b )  surface shear stress; (c) close-up view for the separated cases L, = 3, 4 near the 
trailing edge, including for a^, = 4 the effects of grid refinement (which elsewhere are negligible 
graphically). (0 o 0, 51 gridpoints in X and 41 gridpoints in P; ---, 101 and 81 ; x x x , 201 and 
161.) See also figure 6. 

surface skin friction is small at  the trailing edge; and ( b )  the motion is post-separated 
with separation present on one surface only, as in (2.5e), just ahead of the trailing 
edge. The structures hold quite generally, for the triple-deck or the condensed 
problem, and for the flat plate at  angle of attack as well as for the trailing-edge 
geometries studied hereto. They are also independent of the pressurdisplacement 
law and so concern both subsonic and supersonic flow in particular. To be specific 
below we use the triple-deck problem as the basis. 

4.2. Pre-separated flow 
Suppose that a = a,- A ,  where a, is the 0 ( 1 )  separation value of a, giving A ,  = 0, 
while A is small but positive. Then typically A ,  is small and O ( A ) ,  A ,  = Ah”, say. 
Over most of the flowfield the solution is that for a = a, (the special case considered 
by Daniels (1974) with which our work is consistent when A = 0) but slightly 
perturbed by an amount O(d). Near the trailing edge, however, the perturbation due 
to d is not small on a tiny lengthscale O ( b )  in X. If X = dtx then the flow solution 
subdivides essentially into two subzones SP,, SP, for rf finite and positive (figure 7a), 
with 

P =  A*P(X)+ .... (4.1) 
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FIGURE 5. The condensed problem for thick trailing edges with a ,̂ = 4 fixed and a ,̂ varying: 
(a )  the pressure increment; ( b )  the surface shear stress. See also figure 6. 

Subzone SP, has 

and closely surrounds the trailing edge for X > 0, it being assumed that A- is O(1) .  
Hence pl, Ul satisfy the viscous shear-layer equations and boundary conditions 

Y = 43!P1+ ...) u = A m l +  ...) Y =  d q ,  (4.2) 

(4.3u) 

(4.3b) 

(4 .34 

with no pressure force, from (2.2u-g) essentially, and a similarity starting form. The 
appropriate solution is 

(4.4) 
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FIQURE 6. Streamlines for condensed trailing-edge flows with separation. (a )  symmetric geometry, 
= -4; ( b )  slight non-symmetry, a^, = -2.4; ( c )  moderate non-symmetry, a ,̂ = - 2 ;  ( d )  large 

non-symmetry, 2, = 0;  ( e )  complete non-symmetry, Oi, = 4. Throughout a ,̂ = 4. 

where, from (2.5a-c), Go = G for A+ zero. This gives forward flow with Gl((oo) = 0 
but Go(oo) = Ak C,, where Co = 1.2521 from Stewartson & Williams (1973), implying 
that SP, entrains fluid from SP, (figure 7a). I n  SP, the fluid is slower moving, with 

Y = A3!P2+ .... U = A202+ .... Y =  A E  > 0. (4.5) 

Here (2.2a-g) with (2.3) or (2.4) and the match with SP, imply the inviscid nonlinear 
governing equations 

(4.6,) 
a P2 aO, aP2aD2 d P  

Q=q' D2z-a?~=-a 

and the boundary and starting conditions 

!P,+A~c,B as %+o+ (entrainment), (4 .6b)  

9, = +,uR++x, yi, 0, = !j,d?j+x+ % at rf = O +  (start), ( 4 . 6 ~ )  

9- &R++X+ R + o ( l ) ,  0, - &Fi+X+ % + 0 ( 1 )  as %,-too 
(no displacement), (4.6d) 

where ,u > 0 is the adverse pressure gradient dP+/dX necessary a t  X = 0- to drive 
the flow upstream of the trailing edge to  the verge of separation (since 0 < A ,  4 1 ) .  
Thus for A+ identically zero the profile a t  the trailing edge has the regular 
separation-point form Y, -&uY", U+ - &uY" as Y+O+. In  (4.6d) the zero- 
displacement condition follows from reasoning virtually the same as that for ( 2 . 5 ~ )  
and (2.8e), (2.9): a non-zero displacement (outside SP, of figure 7 )  would provoke too 
large a pressure response from (2.3) or (2.4) to be compatible with (4.1). 

The solution for p2, a,, k in (4.6a-d) can be obtained using characteristics, for 
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FIGURE 7 .  The limit flow structures near the separation angle a = a,: ( a )  the pre-separated 
stage, a = a,- (see $4.2);  ( b )  the post-separated stage, a = a,+ (see $4.3). 

example as in Cole & Aroesty (1968), but its principal features are deducible from 
its forms for small and large 2. For small 3 we find 

!P2(Z, F2) = (&!hE ++X+ F;) 

P ( X )  = P ( O ) + X q +  ..., 4 = A +  Arc,. ( 4 . 7 b )  

The pressure rises relatively fast, the adverse pressure gradient being large, O(d-a), 
as fluid is entrained into SP,. The bulk of the incoming nearly separated flow 
continues forward into SP, nevertheless. Then, downstream, as 2-+ + co, the shear 
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effect of h"+ in (4.6c, d) diminishes and we have 

!P,(X, 6) = B@(T",) + O ( B ) ,  P ( 2 )  = B, (4.7 c) 

where f 2  = E/xj, so that the layer SP, expands like L!?. The function @ ( f 2 )  is 
calculated by Daniels (1974) and has the property that g'(0 + ) < 0. Hence the flow 
is reversed in SP, for a finite range of values of f, far downstream. A tongue of fluid, 
drawn back towards the trailing edge before being turned anticlockwise forward by 
SP,, exists in SP, a t  a finite positive value of 2, and its width then grows like 25 
downstream. It persists until the longer O(1) scale in X when the widths dtx4, ,425 
of SP,, SP, become comparable and O( 1 )  in terms of y. 

This gives a natural development from pre- to post-separated motion. The tongue 
of turning fluid present downstream in the pre-separated situation above closely 
approaches the trailing edge with its forefront position < A! (from further analysis 
of (4.6a)-(4.7b)) as A = a,-a+O. It actually attaches to the trailing edge in the 
special case of the above when a = a, as in Daniels (1974). Its next response when 
a is increased above a, is to pass its forefront just upstream of the trailing edge on 
the upper surface, according to the following structural account. 

4.3. Post-separated $ow 
Suppose now that a = a, +d, where d is small and positive. Therefore, other things 
being equal, the separation takes place at a small O(d)  distance upstream of the 
trailing edge. So, if A- > 0 still, we have the conditions (2.5e) which must be 
reconciled with (2.5d). Again the close neighbourhood of the trailing edge is the 
crucial area, but the lengthscales involved upstream have to be quite distinct from 
those of the pre-separation state considered in $4.2. For although the logarithmic 
irregularities arising in (4.7a), with - Ih"+I replacing h"+ , are smoothed out by viscous 
action, the implied negative value of the small shear as p,+O+ is not removable 
and it forces an irrevocable singularity at higher order. Moreover the SP,-SP, type 
of structure permits no upstream influence in 2 < 0. So another structure is set up. 

It is assumed initially for the sake of argument, and as a guide, that A- > 0 is small 
and O(d) also, A- = dx-, say, the properties for A- of O(1) being obtainable by 
taking h"- large subsequently: see the penultimate paragraph of this subsection. Then 
the major streamwise lengthscale turns out to be O(d4) (see figure _ _  7 b ) ,  longer than 
that of the pre-separated flow of $4.2, but still tiny. With X = A4X, then, we have 

(4.8) ( Y, u, P)  = [I3 qX, z), d W ( X ,  z), d4P(X7] + . . . 
in the viscous sublayers of thickness O(d) adjoining the surface, and downstream, 
where Y =  dZ. From (2.2a-g), (2.3) or (2.4) the boundary-layer equations hold in 

( 4 . 9 ~ )  
- a F  - a t7  a F a 0  d P  a2U u=-,  u -.=---=-=---=+- 

az ax ax az dx az2' 

i7=F=0 a t  Z = O  in X C O ,  (4.9b) 
(4.9c) F+ = p, U regular in z for X >  0, 

- y+ N &+ z 3 - & k ~ 2 + 0 ,  u+ N &+ Z2-kZ+O as Z+OO, (4.9d) 

U - - & - Z ~ - ~ " - Z + O  as Z+--co, (4.9e) 

full, 

and the constraints are 
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Here p+ are the O( 1 )  adverse pressure gradients just upstream of the g4 region, while 
-k -= 6 is the upper-surface skin friction there, scaled by 3. Between the present 
O(J4) region near the trailing edge and the separation at a larger distance O(d) 
upstream the flow suffers little upstream influence, and so the adverse pressure 
gradient p+ forces only a relatively slowly changing separated motion: hence the 
condition (4.9f) upstream. On the tiny O@*) scale, however, a sudden change does 
take place locally, although i t  has little effect on the rest of the flowfield. The outer 
constraints (4.9d, e )  follow from arguments similar to those used earlier regarding the 
necessity of zero displacement to leading order, since the typical slope of the present 
region is so large, O(zp3).  Finally the condition (4.99) holds because to leading order 
the lower-surface flow remains unaffected by the upper-surface flow features up to 
the trailing edge. 

It is believed that the inner problem ( 4 . 9 ~ 3 )  contains the resolution of the dilemma 
between (2.5d, e ) ,  as well as explaining the sudden trends observed numerically in 
$ 3  and figures 4-6. For on the upper surface the problem (4.9u-g) admits an infinity 
of upstream eigensolutions, the unknown multiplying coefficients of which may adjust 
themselves to comply with virtually any desired downstream constraint, in this case 
the requirement (2.5d). The upstream behaviour here has the form 

Y+ = (Qp+Z3-&Z2)+Real ( 4 . 1 0 ~ )  
- 

(4.106) 

for X+-CQ, where exp2 indicates all the nonlinear inertial effects, and C,, I ,  are 
constants. When normalized, the eigenfunctions F,(Z) and ordered eigenvalues P,, 
which must have positive real parts, satisfy the linear equation and boundary 
conditions 

9“; -;pn Z ( Z -  2) F; + P,(Z- 1 )  9, = l,, ( 4 . 1 1 ~ )  

F , ( O )  = FL(0) = F,(oo) = 0, (4.11b) 

from ( 4 . 9 ~ 4  b ,  d ) .  The eigenvalue problem (4.11u, b )  can be shown to govern also the 
first appearance of upstream influence in the boundary-layer equations just beyond 
a regular interactive separation in general. It is different from Stewartson’s (1958) 
for classical separation, where, with prescribed pressure gradients, I ,  = 0 and the 
condition on F k m )  in (4.11 b)  is relaxed to one requiring no exponential growth for 
large 2. Stewartson analysed the equation for large p, but i t  is analysable also for 
any value ofp,, in terms of the coordinate ( Z -  1)2,  and a recent investigation suggests 
that the eigenvalue PI with smallest real part, dominating the upstream influence, is 
large ( x  50 numerically - Smith 1 9 8 3 ~ ) .  The number of eigenvalues is infinite, 
however, akin to those in classical boundary layers, for which 

Pn - S(N++)z for large integral N .  ( 4 . 1 1 ~ )  

The multiplying coefficients C,, n 2 1,  in (4.10u, 6 )  remain undetermined as yet. 
Their values depend on, and influence, the entire flow solution for O( 1) values of x 
and are such that (2.5d) is satisfied, with the skin friction ii+ = ap+/aZ(x, 0 + ) rising 
from - k far upstream to a positive value a t  x = 0 - , according to the present 
description. 

The necessary numerical treatment of ( 4 . 9 ~ 3 )  was conducted with the sweeping 
scheme of $3.  Without loss of generality, one may set k = p+ = 1 henceforth with 
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> 0 and p- 2 0 then varying. Then take p- = 0 as an example, for reasons given 
below, so that the lower-surface flow gives the uniform forward shear 0 = x- 121 
a t  x = 0 - . The solutions of (4.9a-g) in that case, with 1- = 1,12, are shown in figure 
8 (a,  b ) .  *The upper-surface skin friction (figure 8 b )  rises from - 1 to a positive value 
a t  X = 0- , yielding the reattachment in X < 0 after the separation infinitely far 
upstream in x. The pressure gradient (figure 8 a )  in turn changes from adverse 
upstream to favourable, as the small tongue of turning fluid is forced just upstream 
of the trailing edge. The phenomenon is strictly smooth in the (r, 2)-frame, although 
an added complication is the largeness of PI, which reduces the upstream influence 
substantially, and numerically required the use of fine grid spacing in the r-direction 
again. The associated streamline pattern closely resembles that near the trailing edge 
in all of figures 6 (c-e) but with stretching in the streamwise direction, similar to figure 
7 ( b ) .  

Far downstream the flow is completely forward, with 
- 
Y-BF(q)+o(B) ,  

(4.12) 

P(X)+O 
predominantly. Here 7 = Z / s ,  and (4.9a) gives the similarity equation 

F i ” + @ F - & F ’ 2  = 0 (4.13a) 

for F(q), with the boundary conditions being 

F - 9 3 + 0  as q + w ,  F ’ ( - ~ ) = o  (4.13b) 

from (4.9~-e), for the case p- = 0. The solution of (4.13a, b )  gives 
F( - 0 0 )  = -Go( = - 1.39) from Smith & Daniels (1981). Hence the pressure must 
increase again far downstream, with 

(4.13 c) 

_ _  
from the extension - -@- Z2- P ( X ) / x -  (2+- GO) of the lower condition (4.9e) 
for p- = 0. With p- = 0 there is also an outer domain far downstream, of thickness 
O ( B ) ,  below the O ( B )  domain of (4.12), therefore. The trend (4.13~) is fairly in iine 
with that of the numerical results in figure 8. Further, the behaviour (4.12), (4.13a-c) 
indicates that the present region of thickness O(d) grows to O(1) thickness beyond 
the trailing edge as X becomes O( 1)  again (x+ O ( A - * ) ) ,  with forward flow there ; while 
to leading order the small shears d? ( = 7 )  on the lower surface and - dk on the upper 
have negligible global effect. This too ties in with the earlier numerical results of $3, 
especially with regard to the dramatic flow features of figure 6 when h- is small but 
positive. 

The above holds when A- > 0 is small, but the flow properties when A-  > 0 is O(1) 
emerge next, simply by taking h”- to be large. Then the limit problem develops as 
follows. - When x i s  large, positive and O(x!-) the major scale in 2 is of order x-, while 
Y, v, p have the orders h;”_, A?, h””_, respectively. So the boundary-layer equations 
hold in full, subject to the separation form F - Z 3  a t  the upper extremity in 2 and 
to the forward shear q- 121 a t  the lower. For smaller x the lower shear force 
dominates, giving mainly a strong suction effect on the upper-surface flow and forcing 
the necessary reattachment there. The influence of p- is then negligible, as in the 
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FIGURE 8(a).  For caption see facing page. 

calculations above. For X of order h”4_, however, the extreme upper forward flow 
reasserts itself and gradually drags the upper part of the motion forward again. 
Finally, for Xgreater than that, the conditions (4.12)-(4.13~) are achieved. Therefore 
the characteristic adjustment length from reversed to forward flow downstream of 
the trailing edge is increased to O(h”4_) in terms of X, i.e. to O(x? d4) in terms of the 
original coordinate X. 

Converting that to the flow structure holding for A- actually 0 ( 1 )  (i.e. taking x- 
to be O(1-I))  we have the result that the main length of the reversed-flow zone 
downstream of the trailing edge must be O( 1) in X then, whereas upstream the initial 
influence of the reattachment process adheres to the tiny d4 scaling in X. In  addition, 
a smaller streamwise lengthscaling like that in $4.2, i.e. X = O(df) here, comes back 
into operation when A- is O( l) ,  but the initial profile involved does not have the simple 
form ( 4 . 6 ~ ) .  Instead, reversed flow is present through interaction between the 24 scale 
further upstream (X+O-)  and the more local 28 scale (as d - fX+-o~) ,  and 
reattachment must ensue ahead of A - f X  = 0 by means of ( 4 . 6 ~ ~ ) .  

The upshot of this structural view of post-separated flows is the prediction that, 
first, a tiny lengthscale 0(24) comes into play around the trailing edge when the 
typical negative minimum of the skin friction on the surface with separation is small, 
of order -2 ; secondly, reattachment takes place within that lengthscale, or a shorter 
one, in contrast with the much larger upstream separation distance, and it resolves 
the difficulty over ( 2 . 5 d , e ) ;  and, thirdly, the global effect of this last, sudden but 
tiny-scaled, adjustment is small. These aspects appear to be reflected well in the 
post-separation results of $3, and would seem to account for the numerical difficulties 
which had to be addressed there. In particular, since d,  measured in terms of -r+ 
in figures 4 and 5 ,  is typically 0.1, the implied O(J4) streamwise lengthscale is of the 
order of near the trailing edge. 
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FIGURE 8. Post-separated limit solutions (see $4.3) for (a )  the pressure; 
( b )  the surface shear stress. 

5. Concluding remarks 
One of the principal aims of this study has been to investigate non-symmetric 

trailing-edge flows with one-sided separation, where (2.5 e )  holds, and their relation 
to the condition ( 2 . 5 d )  requiring forward flow a t  the onset of the trailing edge. There 
is no doubt that the presence of one-sided separation itself provides the very 
mechanism for the satisfaction of (2 .5d )  by permitting upstream influence through 
the reversed flow. So certainly (2 .5e )  does not necessarily contradict ( 2 . 5 d ) .  The 
evidence from our numerical work of $3 coupled with the structural forms of pre- 
and post-separated flows put forward in $ 4  is quite strongly that the above 
mechanism does indeed act to make the one-sided separating flow consistent with 
(2 .5d ) .  A tongue of anticlockwise turning fluid is drawn just ahead of the trailing edge 
to yield a reattachment of the local upper-surface flow, with forward flow then 
proceeding to the trailing edge exactly as required by (2 .5d ) .  

This phenomenon can force a rather dramatic response in the overall flowfield, as 
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figure 6 shows, but nevertheless it appears to be not unreasonable physically,t 
especially when set against the properties of pre-separated motion or of two-sided 
separating flows. In the former case the tongue of turning fluid already exists, beyond 
the trailing edge, when the upper-surface flow is just attached. Then, on the verge 
of upper-surface separation, the tongue moves upstream to virtually touch the 
trailing edge, apparently presaging the further movement upstream required in the 
post-separated state. Similarly, in two-sided separating flow the two symmetric 
eddies present for a thick symmetric trailing edge are gradually distorted and turned 
as non-symmetry is introduced, say by making the lower-surface flow gradually 
stronger. The downstream end of the upper eddy iS pushed upstream, the lower eddy 
decreases in size and is pushed further downstream, and upper-surface fluid pours 
round and between them, encircling the lower eddy in particular before passing to 
downstream infinity. This creates the tongue of anticlockwise-turning fluid close to 
the trailing edge in readiness for the crossover to one-sided separation (as a2 passes 
through the value a, in $3). There the lower eddy seems to disappear eventually, but 
the tongue remains and is intensified by the effective suction of the stronger flow 
leaving the lower surface, and therefore the upper eddy is forced to close more 
abruptly. 

The abruptness of the upper eddy closure then, and of the allied reattachment of 
the tongue on to the upper surface, fall in well with the analytically based account 
of the post-separated regime in $4.3. According to $4.3, a tiny pressure fall acts 
abruptly, over a tiny distance, to produce a sizeable favourable pressure gradient 
which forces the reattachment. The typical length involved in the closure of the upper 
eddy and the intensity of the upstream-facing tongue rapidly decrease and increase 
respectively as the lower surface skin friction becomes more positive. Upstream, 
however, the small lengthscale controlling the overall adjustment of the upper-surface 
flow from a separated state to a reattached state close to the surface is generally of 
order ( - 7 p ) 4 .  This is tiny, even compared with the theoretically small upstream 
separation distance O( -7;l.'"). Subsection 4.3 seems to provide firm structural 
support for the rapidity of the reattachment process observed numerically then, as 
well as for the subsequent sudden plunge of the upper-surface fluid towards the lower 
(due to entrainment) followed by the more gradual recovery of forward motion as 
the upper flow speed increases again, with a rising pressure. 

Given such tiny lengthscales and sudden adjustments of the flowfield, it is not so 
surprising that the calculation of one-sided separating flows is initially at its most 
sensitive near the trailing edge. Yet both the numerical scheme of $3  and a quite 
different one developed by Dr M. J. Werle (see also Elliott & Smith 1983; Burggraf 
1983) give exactly the same strong trends towards upper-surface reattachment as 
they converge, including the effects of grid refinement, and they both seem to reflect 
reasonably well the short lengthscales involved. Essential to the numerical treatment 
here is the use of windward differencing to accommodate the reversed-flow influence 
(this influence is the one major factor controlling the flow response in the post-separated 
regimq) and the acknowledgement of the discontinuities across the trailing-edge 

t Dr M. J. Werle has kindly pointed out Hegna's (1981, e.g. his figures 3,13, 14) recent numerical 
solutions of the Navier-Stokes equations for non-symmetric trailing-edge flows, with turbulence 
modelling, and the turbulent/laminar flow calculations and/or experiments of Solignac (1980, see 
his figures 2% 6, 6-8), Viswanath & Brown (1982), Le Balleur (1981, e.g. his figures 9, 19, 20, 30). 
See also Mehta & Lavan (1975) and Mehta (1977). All of these works, for laminar or even turbulent 
flow, appear to fall well in line with the present account, in terms of their streamlines, vorticity 
fields or velocity profiles, and this is an encouraging feature. 
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FIGURE 9. Possible development of the flow past a thin airfoil as the angle of incidence is increased 
(not to scale). An alternative, however, is the development of a single predominant eddy. See also 
95, and, on the unsteady evolution, Mehta & Lavan (1975), Mehta (1977) and Smith (19823). 

station. Away from the trailing edge the flow calculation is much less sensitive, which 
is an encouraging feature, and the flow features that emerge (above) are virtually 
independent of the differencing techniques adopted right at the trailing edge and of 
the change in the solution very close to the trailing edge before convergence is 
attained. Once again, therefore, there is a tie-in to the structural description of 54.3. 

The above supports the view that one-sided separation ahead of the trailing edge 
is a continuous and natural development from attached flow or from double-sided 
separation as the parameter a, say, governing the non-symmetry is increased. There 
is no catastrophic stall. It is avoided by the reattachment, ahead of the trailing edge, 
of the tongue of turning fluid. Any irregularities involved as a passes through the 
incipient separation value a, are relatively weak, therefore, confined to higher 
derivatives with respect to a, as regards the overall properties of the motion such 
as downwash, circulation, lift and drag. These conclusions apply to both the 
condensed-flow and the triple-deck descriptions. 

A t  this stage i t  is interesting to speculate on the subsequent behaviour of the 
flowfield as a is increased still further. Initially we expected two recirculating eddies 
to be present in the immediately post-separated regime anyway, but the results above 
indicate that this need not be so. The upstream reattaching tongue of turning fluid 
can be supplied from downstream either by the plunge of upper-surface fluid or by 
the upstream end of a second, lower, anticlockwise-rotating eddy. The former 
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happens, apparently, for the thin drooped trailing edge. Further increase of the 
non-symmetry may reinstate the second eddy, however, as the accelerated flow off 
the lower surface and the plunging section of upper-surface fluid are then forced closer 
together. Ultimately a smooth connection (rather than the discontinuous one 
suggested in previous works) is possible, in principle, with the grossly separated flow 
structure expected for trailing edges with asymptotically larger non-symmetry, e.g. 
at increased angle of attack. The upper-surface separation point is pushed far 
upstream, the reattachment point also, possibly, and the wake effect is much 
enhanced with perhaps two or more elongated eddies present. For the condensed 
problem the connection then is made with a structure like that of Smith & Daniels 
(1981). A distinct separated shear layer rides high over the trailing edge, entraining 
fluid from below, while the lower-surface flow sets up another strong shear layer 
beyond the trailing edge. The necessary supply of entrained fluid is provided exactly 
by the viscous coalescence of the two shear layers far downstream, and solutions for 
the entraining motion are found to allow the required reattachment to occur, on the 
upper surface ahead of the trailing edge, in a relatively gentle fashion. For the 
triple-deck problem the connection can readily be made to an upstream separation 
of the Sychev (1972) - Messiter (1975) - Smith (1977) form in subsonic flow, and of 
the Stewartson & Williams (1973) - Neiland (1971) form in supersonic flow, in 
principle. The flow structure then has some broad resemblance to that for the 
condensed problem, although by contrast its complete features have still to be 
delineated. Here, incidentally, there is no significance in the closeness of the reduced 
angles 0.47, 2.050 for subsonic or supersonic incipient separation in the non-aligned 
flat-plate studies noted earlier for the triple-deck problem and the sometimes- 
associated values 0.44, 1.800 of Smith (1977), Williams (1975) (cf, the respective 
values 0.42+, 1.790 of Korolev 1 9 8 0 ~ ;  Curle 1982) controlling upstream breakaway 
separation. The latter values come into play only through the smooth limiting 
connection (a+ 00) described above, we believe. After that a still further increase of 
the non-symmetry beyond the triple-deck scale can be expected to disturb the global 
flowfield significantly, compared with the mainly local effects produced before. There 
is an interesting adjustment possible now, from the small, nonsymmetric, double eddy 
structure-f to the large double-eddy structure of grossly separated flow as, say, we 
gradually turn a flat plate until it is normal to the outer free stream (see figure 9). 
The same end result can be obtained, in principle, by thickening the symmetric 
trailing-edge geometry of figure 6 ( a )  and/or compressing the associated airfoil length, 
as in Cheng & Smith (1981), rather than going through the non-symmetric process 
of figures 6 (u)-(e).  There is also the prospect that the gradually increasing eddies near 
the trailing edge may so disturb the global flowfield that eventually a castrophic 
leading-edge stall of the theoretical (Stewartson, Smith & Kaups 1982; Smith 19823) 
kind is provoked on a round-nosed airfoil subjected to increased non-symmetry. The 
last-named paper emphasizes the increased role of unsteadiness in such an event. 

t The flow structure may well be non-unique, of course, but that remains to be seen (see also 
Smith 1983b). If, for instance, there is a single dominant eddy present near the trailing edge, 
accompanied by the subsequent plunge and reverse of the tongue o f  turning fluid (as in figures 6c-e), 
with or without a weaker eddy downstream, this may be the embryonic version of the highly 
nonsymmetric flowfields often observed in practice for bluff body motions. See Batchelor’s (1967) 
plates 2, 4, 7 ,  10, 1 1 ,  for example. Again it would be of great interest to follow the unsteady 
development of the flowfields without, but more especially with, non-symmetry present. 
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Appendix. If two-sided separation is present 
When the triple-deck or condensed flow on both the upper and lower surfaces is 

separated a t  the trailing edge, then the velocity profile U = Uo( F) = YL( F) in the 
near-wake ( X  = 0 + ) is non-zero and negative a t  y = 0. Hence the irregularity across 
the trailing-edge station is concentrated mostly on the upstream side X < 0, (XI < 1 ,  
where i t  has a Blasius-like form involving a JXJi dependence rather than the more 
usual X i  dependence encountered in Goldstein-like wakes. 

For X small and negative we have 

(A 1 )  
F 

y =  l x l t fB(q)+ .** ,  7 = ( x ( 1 7  

where f B  satisfies the Blasius equation 

&(a) = - UO(O) < 0 J 

from (2 .2a-c) ,  provided that P is finite a t  X =  0 (see (A4)) .  Hence 
Y - Uo(0)  (Y-d(:)]Xli) a t  the edge of the thin Blasius-type layer, where the known 
constant A?) represents the effective Blasius displacement. Further out, for Yof order 
unity, the solution therefore expands in the form 

Y, - = Y0(F)+IXliYy)(F)+ - ..., (A 3) 

while 
P+ - ( X )  = P(0)  + 1x14 F” - + . . . . 

From (2 .2a ,  b )  we obtain 

after matching with the Blasius-type layer as F+O. Then the match with the outer 
displacement constraint (2.2 e )  requires that 

J O  

where F * ( X )  - q*lXlt as X + O - ,  so that the trailing edge can be blunt. The 
pressure-displacement relation (2 .3)  or (2 .4)  has also been used in conjunction with 
(A 5) to give the result (A 6) for the local pressure. 

We note that the principal value of the integral in (A 5) is required for the jump 
across the irregularity a t  the critical level = z, where Uo( yc) = 0. It can be shown 
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that the irregularity here is smoothed out mainly in a thin layer of thickness O(lXli) 
centred at Y = Y,. 
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